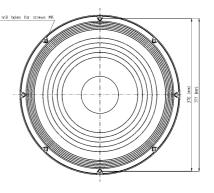
15W500

LF Ferrite Transducer

KeyFeatures

- 100,5dB SPL 1W / 1m average sensitivity
- 65 mm (2,5 in) Interleaved Sandwich Voice coil (ISV)
- 350 W AES power handling
- Excellent transient response and cone damping
- Improved heat dissipation via unique basket design
- Ideal for compact two way and multiway systems


Description

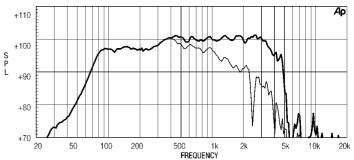
The 15W500 is a fine example of a high quality transducer providing the right balance between performance and engineering costs. This ferrite low frequency driver satisfies the demand for a 15" loudspeaker which combines excellent linearity with good sensitivity and power handling characteristics. The 15W500 has been designed for two-way or multi-way reflex systems. The high quality paper cone has a smooth, Eighteen Sound specified curvilinear textured profile design that eliminates bell-mode resonance within the intended frequency range. The cone is carried by a specially treated and dampened multi-roll linen suspension designed to control excursion while maintaining piston action linearity. The 15W500 also employs our Interleaved Sandwich Voice coil (ISV) technology, in which a high strength fiberglas former carries windings on both the outer and inner surfaces to achieve a mass balanced coil. This results in an extremely linear motor assembly with a reduced tendency for eccentric behavior when driven hard. Voice coil cooling has been achieved by incorporating airways between the chassis back plate and the magnetic top plate, allowing heated air from the voice coil and gap to be channeled away and dissipated by the chassis basket. This technology is the result of a meticulous 3D CAD design project.

Models

Model	Code	Info
0221584310	0221584310	8 Ohm

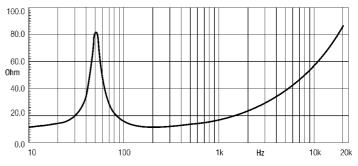
General Specifications

Nominal Diameter	380 mm (15 in)	
Rated Impedance	8 Ohm	
AES Power	350 W	
Program Power	500 W	
Peak Power	1000 W	
Sensitivity	100,5 dB	
Frequency Range	50 - 4500 Hz	
Power Compression @-10dB	0,7 dB	
Power Compression @-3dB	2,5 dB	
Max Recomm. Frequency	3000 Hz	
Recomm. Enclosure Volume	80 - 200 lt. (2,47 - 5,3 cuft)	
Minimum Impedance	6 Ohm at 25°C	
Max Peak To Peak Excursion	23 mm (0,88 in)	
Voice Coil Diameter	64 mm (2,5 in)	
Voice Coil winding material	aluminum	
Suspension	Multiroll, Polycotton	
Cone	Curvilinear ribbed, Paper	


Thiele Small Parameters

50 Hz
5,2 Ohm
0,085 sq.mt. (131,75 sq.in.)
9,64
0,55
0,52
189 lt. (6,68 cuft)
55 gr. (0,12 lb)
12,6 Tm
± 4 mm (±0,16 in)
1,04 mH
98,2 dB

Mounting information


Overall diameter	387 mm (15,23 in)	
N. of mounting holes and bolt	8	
Mounting holes diameter	7,15 mm (0,28 in)	
Bolt circle diameter	370 - 371 mm (14,55 - 14,6 in)	
Front mount baffle cutout ø	353 mm (13,90 in)	
Rear mount baffle cutout ø	357 mm (14,06 in)	
Total depth	161 mm (6,33 in)	
Flange and gasket thickness	11,5 mm (0,45 in)	
Net weight	4,3 kg (9,4 lb)	
Shipping weight	5,1 kg (11,2 lb)	
Packaging Dimensions	5,1 kg (11,2 lb)	

FREQUENCY RESPONSE CURVE

FREQUENCY RESPONSE CURVE OF 15W500 MADE ON 125 LIT. ENCLOSURE TUNED 50HZ IN FREE FIELD (4PI) ENVIRONMENT. ENCLOSURE CLOSES THE REAR OF THE DRIVER. THE THIN LINE REPRESENTS 45 DEG. OFF AXIS FREQUENCY RESPONSE FREE AIR IMPEDANCE MAGNITUDE CURVE

Notes

1) AES power is determined according to AES2-1984 (r2003) standard

2) Program power rating is measured in 125 lit enclosure tuned 50Hz using a 40 - 400Hz band limited pink noise test signal with 50% duty cycle, applied for 2 hours.

3) The peak power rating represents the maximum permitted instantaneous peak power level over a maximum period of 10ms which will be withstood by the loudspeaker without damage.

4) Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1m from the baffle panel, when connected to 2,83 V sinewave test signal swept between 100Hz and 500Hz with the test specimen mounted in thesame enclosure as given for (1) above.

5) Frequency range is given as the band of frequencies delineated by the lower and upper limits where the output level drops by 10 dB below the rated sensitivity in half space environment.

6) Power compression represents the loss of sensitivity for the specified power, measured from 50-500 Hz, after a 5 min pink noise preconditioning test at the specified power.

7) Linear Math. Xmax is calculated as (Hvc-Hg)/2 Hg/4 where Hvc is the coil depth and Hg is the gap depth.

