

15CXA400Nd COAXIAL TRANSDUCER

KEY FEATURES

- 15" woofer with 4" voice coil and 2,8" voice coil compression driver
- Program power: 800 W LF / 180 W HF
- Sensitivity: 98 dB LF and 105 dB HF
- Low weight and compact common magnet system design
- · Demodulating rings in LF and HF units
- Composite Titanium/Mylar diaphragm
- Waterproof LF cone
- 60° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS

Nominal diameter	381 mm 15 in
Rated impedance (LF/HF)	8 / 16 Ω
Minimum impedance (LF/HF)	6,6 / 10,9 Ω
Power capacity* (LF/HF)	400 / 90 W _{AES}
Program power (LF/HF)	800 / 180 W
Sensitivity (LF/HF**)	98 dB 1W @ Z _N
	105 dB 1W @ Z _N
Frequency range	35 - 20.000 Hz
Recom. HF crossover	1,5 kHz or higher
	(12 dB/oct min slope)
Voice coil diameter (LF/HF)	101,6 mm 4 in
	72,2 mm 2,84 in
BL factor	19,04 N/A
Moving mass	0,084 kg
Voice coil length	16 mm
Air gap height	9 mm
X _{damage} (peak to peak)	28 mm

THIELE-SMALL PARAMETERS***

Resonant frequency, f _s	40 Hz
D.C. Voice coil resistance, R _e	6,6 Ω
Mechanical Quality Factor, Q _{ms}	4,37
Electrical Quality Factor, Q _{es}	0,39
Total Quality Factor, Q _{ts}	0,36
Equivalent Air Volume to C _{ms} , V _{as}	196 I
Mechanical Compliance, C _{ms}	181 μm / N
Mechanical Resistance, R _{ms}	4,91 kg / s
Efficiency, η ₀	3,3 %
Effective Surface Area, S _d	$0,088 \text{ m}^2$
Maximum Displacement, X _{max} ****	6 mm
Displacement Volume, V _d	350 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,9 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION

388 mm	15,28 in
370 mm	14,57 in
349,5 mm	13,76 in
360 mm	14,17 in
180 mm	7,09 in
7 I	0,25 ft ³
7,22 kg	15,92 lb
8,10 kg	17,86 lb
	349,5 mm 360 mm 180 mm 7 I 7,22 kg

Notes:

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 7 kHz.
- *** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- **** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.

15CXA400Nd

COAXIAL TRANSDUCER

FREQUENCY RESPONSE

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FREE AIR IMPEDANCE CURVE

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m with FD-2XA

POLAR PATTERN

beyma //