

15WRS400

LOW FREQUENCY TRANSDUCER WRS Series

KEY FEATURES

- High power handling: 800 W program power
- 3" copper wire voice coil
- High sensitivity: 98 dB (1W / 1m)
- Optimized pressed steel frame
- FEA optimized ceramic magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Waterproof cone treatment on both sides of the cone
- Low harmonic distortion and linear response
- Wide range of applications of low and mid-low frequencies

TECHNICAL SPECIFICATIONS

Nominal diameter		380 mm	15 in
Rated impedance			8 Ω
Minimum impedance			7 Ω
Power capacity*		400	W_{AES}
Program power			800 W
Sensitivity	98 dB	1W / 1m	@ Z _N
Frequency range		40 - 4.0)00 Hz
Recom. enclosure vol.	70 / 150 I	2,45 / 5	5,25 ft ³
Voice coil diameter		77 mm	3 in
BI factor		18	,7 N/A
Moving mass		0,0	096 kg
Voice coil length		•	16 mm
Air gap height			8 mm
X _{damage} (peak to peak)		3	30 mm

DIMENSION DRAWINGS

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	35 Hz
D.C. Voice coil resistance, R _e	5,6 Ω
Mechanical Quality Factor, Q _{ms}	9,1
Electrical Quality Factor, Qes	0,34
Total Quality Factor, Qts	0,33
Equivalent Air Volume to C _{ms} , V _{as}	233 I
Mechanical Compliance, C _{ms}	213 μm / N
Mechanical Resistance, R _{ms}	2,3 kg / s
Efficiency, η ₀	2,8 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	6,3 mm
Displacement Volume, V _d	555 cm ³
Voice Coil Inductance, L _e @ 1 kHz	1,1 mH

MOUNTING INFORMATION

Overall diameter	385 mm	15,15 in
Bolt circle diameter	367 mm	14,44 in
Baffle cutout diameter:		
- Front mount	353 mm	13,90 in
Depth	163 mm	6,42 in
Net weight	6,2 kg	13,7 lb
Shipping weight	7,2 kg	15,9 lb

Notes

- * The power capacity is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{vc}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.

15WRS400

LOW FREQUENCY TRANSDUCER WRS Series

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //